

INDIAN SCHOOL AL WADI AL KABIR

Practice Paper (2022-2023)-Assessment -I Sub: MATHEMATICS (041) N

Max Marks: 80 Time: 3 hours

Class: XII Date: 01-09-2022

General Instructions:

- 1. This question paper contains six sections- A, B, C, D, E and F. Each part is compulsory.
- 2. Section A has 16 objective type questions of 1 mark each.
- 3. Section B has 8 MCQ type questions of 1 mark each.
- 4. Section C has 2 Case based questions.
- 5. Section D has 8 short answer type (SA1) questions of 2 marks each.
- 6. Section E has 4 short answer type (SA2) questions of 3 marks each.
- 7. Section F has 4 long answer type questions (LA) of 5 marks each.
- 8. There is an internal choice in some of the questions.

SECTION - A

1	If $n(A) = 3$, then how many reflexive relations are possible in set A?	1
2	A relation R in $S = \{4, 2, 3\}$ is defined as $R = \{(4, 4), (4, 2), (2, 2), (3, 3)\}$. Find the element of the	1
	relation R to be removed to make it as an equivalence relation	
3	Let A = $\{1, 2, 3, 4\}$. Let R be the equivalence relation on A × A defined by (a, b) R (c, d)	1
	if $a + d = b + c$. Then find the equivalence class [(1, 3)] is	
	OR	1
	Find the maximum number of equivalence relations on the set $A = \{2, 3, 4\}$	1
4	State the reason why the relation R = {(a, b): $a \le b^2$ } on the set R of real numbers is not reflexive.	1
5	A relation R in the set of real numbers R defined as $R = \{(a, b): \sqrt{a} = b\}$ is a function or not. Justify	1
6	Let f: $[2, \infty) \rightarrow R$ be the function defined by $f(x) = x^2 - 4x + 5$, then find the range of f	1
7	$\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2}\right)\right]$ is equal to	1
8	Write the principal value of $\tan^{-1}(\sqrt{3}) + \cot^{-1}(-\sqrt{3})$	1
	OR	
	Find the value of $2\sec^{-1}2 + \sin^{-1}(\frac{1}{2})$	
9	Evaluate $\int \frac{x^3}{x+1} dx$	1
		1

10	Find the maximum value of $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 + sin\theta & 1 \\ 1 & 1 & 1 + cos\theta \end{vmatrix}$	1
11	if $\begin{vmatrix} x & sin\theta & cos\theta \\ -sin\theta & -x & 1 \\ cos\theta & 1 & x \end{vmatrix} = 8$, then find the value of x	1
12	If A is a square matrix of order 3 such that $ adj A = 64$, then $ A $ is OR If A is square matrix such that $A^2 = A$, then $(I + A)^3 - 7 A$ is equal to	1
13	Evaluate $\int \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx$	1
14	Find the value of k (k < 0) for which the function f defined as $f(x) = \begin{cases} \frac{1 - \cos kx}{x \sin x}, & x \neq 0\\ \frac{1}{2}, & , x = 0 \end{cases}$	1
15	Is continuous at $x = 0$ If $e^x + e^y - e^{x+y}$ then find $\frac{dy}{dy}$	1
	$\operatorname{II} e^{-} + e^{-} = e^{-} e^{-}$, then $\operatorname{III} d \frac{dx}{dx}$ OR	
	If $x = a \sec\theta$, $y = b \tan\theta$, then find $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{6}$	
16	Find the intervals in which the function f given by $f(x) = x^2 - 4x + 6$ is strictly increasing:	1
	<u>SECTION - B</u>	
17	The set of points where the functions f given by $f(x) = x - 3 cosx$ differentiable is(a) R(b) R -{3}(c) $(0, \infty)$ (d) none of these	1
18	A = $\begin{bmatrix} cosx & sinx \\ -sinx & cosx \end{bmatrix}$, then the value of x satisfying $0 < x < \frac{\pi}{2}$ when A + A ^T = $\sqrt{2}$ I ₂ is	1
	(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{5}$	
19	If a function f: A x B \rightarrow B x A is defined by f (a, b) = (b, a) on two sets A and B, then the function is(a) Many-one(b) One-one but not onto(c) One-one and onto(d) Neither one-one nor onto	1
20	In a linear programming problem, the constraints on the decision variables x and y are $x - 3y \ge 0$, $y \ge 0$ and $0 \le x \le 3$, then the feasible region(a) is not in the first quadrant(b) is bounded in the first quadrant(c) is unbounded in the first quadrant(d) does not exist	1
21	If $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \dots + \infty}}}$, then $(2y - 1)\frac{dy}{dx}$ is equal to	1
	(a) $\sin x$ (b) $\cos x$ (c) $-\cos x$ (d) $-\sin x$	

22	If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then A^{100} is					
	(a) $2^{100}A$	(b) 2 ⁹⁸ A	(c) 2 ⁹⁹ A	(d) 2 ⁹⁷ A		
23	The interval on which	the function $f(x) = 2x^3$	$x^{2} + 9x^{2} + 12x - 1$ is decreased	asing is	1	
	(a) (-1, ∞)	(b) (-2, -1)	(c) (-∞, -2)	(d) (-1, 1)		
24	If $y = \tan(x + y)$, then	$\frac{dy}{dx}$ is equal to			1	
	(a) $-\operatorname{Cosec}^2(x + y)$	(b) $\operatorname{Cosec}^2(x + y)$	(c) -Cosec($x + y$)	(d) $\operatorname{Cosec}(x + y)$		
		<u>S</u>	ECTION - C			
25	Two schools A and B Punctuality. The school respective values to its B wants to spend Rs. 3 same award money to each value is Rs. 1200	CASE-BA want to award their sele of A wants to award Rs. 3, 2 and 1 students res 3100 to award its 4,1 an the three values as scho . Using the concept of 1	ASED/DATA-BASED ected students on the value at a cach, Rs. y each and F pectively with a total aw and 3 students on the respectively with a total amount and 3 students on the respectively with a total amount matrix and determinants are a compared by the total matrix and determinants are a compared by the total amount matrix and determinants are a compared by the total amount matrix and determinants are a compared by the total amount and the total amount are a compared by the total amount matrix and determinants are a compared by the total amount and the total amount are a compared by the total amount are a compared by the total amount and the total amount are a compared by	tes of Honesty, Hard work, and Rs. z each for the three ard money of Rs.2200. School ctive values (by giving the t of award for one prize on answer the following questions.		

	- FAT						
i)	What is the award	l money for Honesty?			1		
	(a) □ 350	(b) 🗆 300	(c) □ 500	(d) 🗆 400			
ii)	What is the award	I money for Punctuality?			1		
	(a) 🗆 300	(b) 🗆 280	(c) □ 450	(d) 🗆 500			
iii)	What is the award	I money for Hard work?			1		
	(a) 🗆 500	(b) 🗆 400	(c) □ 300	(d) □ 550			
iv)	If P and Q are two	$rac{P}{P}$ matrix such that $PQ = Q$	and $QP = P$, then $ Q^2 $ i	is equal to	1		
	(a) <i>Q</i>	(b) <i>P</i>	(c) 1	(d) 0			
26	A square piece of corner and folding	f tin 24cm is to be made in ng up the flaps to form a bo	nto a box without top by	v cutting a square from each			

	Image: set on the above information answer the following:	
i)	What is the length of side of the square to be cut from each corner so that the box will have	2
, ,	maximum volume?	
ii)	What is the inner surface area of the box with maximum volume?	2
	SECTION - D (Each guestion carries 2 marks)	

27	Show that the relation R in the set Z of integers given by $R = \{(a, b): 3 \text{ divides } a - b\}$ is an equivalence relation.	2
28	Express $\sin^{-1}\left(\frac{\sin x + \cos x}{\sqrt{2}}\right)$, where $\frac{-\pi}{4} < x < \frac{\pi}{4}$ in the simplest form	2
29	If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 - 5A + 7I = 0$. Hence find A^{-1}	2
30	Find $\int \frac{1}{\cos^2 x (1-\tan x)^2} dx$	2
31	The sides of an equilateral triangle are increasing at the rate of 2cm/sec. Find the rate at which the area increases, when side is 10 cm	2
32	Based on the given shaded region as the feasible region in the graph, at which point(s) is the objective function $Z = 3x + 9y$ maximum?	2

	$\begin{array}{c} Y \\ 25 \\ 15 \\ (0, 10) \\ X' \\ Y' \\ Y' \\ (10, 0) \\ X' \\ Y' \\ (10, 0) \\ x + y = 10 \end{array} $	
33	Show that the relation R on a set of real numbers defined by xRy if x - y + $\sqrt{2}$ is irrational is reflexive but neither symmetric nor transitive	2
34	If $y = \sec^{-1}\left(\frac{\sqrt{x} + 1}{\sqrt{x} - 1}\right) + \sin^{-1}\left(\frac{\sqrt{x} - 1}{\sqrt{x} + 1}\right)$, then find $\frac{dy}{dx}$	2

SECTION - E (Each question carries 3 marks)

35	Find X so that $X \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix}$	3						
36	Find the equation of the line joining A (1, 3) and B (0, 0) using determinants and find k if D (k, 0) is	3						
	a point such that area of triangle ABD is 3sq units.							
37	If $y = e^{x \sin^2 x} + (\sin x)^x$, find $\frac{dy}{dx}$	3						
	OR							
	If x = a sin2t (1 +cos2t) and y = b cos2t (1 - cos2t), find $\frac{dy}{dx}$ at t = $\frac{\pi}{4}$							
38	Evaluate $\int \frac{1}{1-x^2} dx$	3						
	OR OR							
	Evaluate $\int \frac{1}{1+tanx} dx$							
	SECTION – F (Each guestion carries 5 marks)							

39	Use product -x + 2y - 2z =	1 0 3 12	-1 2 -2 and 2	$\begin{bmatrix} 2\\ -3\\ 4 \end{bmatrix}$ x -3y	$\begin{bmatrix} -2\\9\\6\\+4z \end{bmatrix}$	0 2 1 = 3	$\begin{bmatrix} 1 \\ -3 \\ -2 \end{bmatrix}$ to solve the system of equation $x + 3z = 9$,	5
	OR							

	If $A = \begin{bmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{bmatrix}$, then find A^{-1} . Using A^{-1} solve the set of equations $\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 2$, $\frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 5$ and $\frac{6}{x} + \frac{9}{y} - \frac{20}{z} = -4$.	
40	If $y = \frac{x \cos^{-1} x}{\sqrt{1 - x^2}} - \log \sqrt{1 - x^2}$, then prove that $\frac{dy}{dx} = \frac{\cos^{-1} x}{(1 - x^2)^{3/2}}$	5
41	Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the	5
	volume of the sphere.	
42	A manufacturing company makes two models A and B of a product. Each piece of Model A requires 9 labour hours for fabricating and 1 labour hour for finishing. Each piece of Model B requires 12 labour hours for fabricating and 3 labour hours for finishing. For fabricating and finishing, the maximum labour hours available are 180 and 30 respectively. The company makes a profit of Rs 8000 on each piece of model A and Rs 12000 on each piece of Model B. How many pieces of Model A and Model B should be manufactured per week to realise a maximum profit? What is the maximum profit per week? OR Reshma wishes to mix two types of food P and Q in such a way that the vitamin contents of the mixture contain at least 8 units of vitamin A and 11 units of vitamin B. Food P costs Rs 60/kg and Food Q costs Rs 80/kg. Food P contains 3 units/kg of Vitamin A and 5 units / kg of Vitamin B while food Q contains 4 units/kg of Vitamin A and 2 units/kg of vitamin B. Determine the minimum cost of the mixture	5