INDIAN SCHOOL AL WADI AL KABIR

Practice Paper (2022-2023)-Assessment -I
 Sub: MATHEMATICS (041)
 Max Marks: 80
 Time: 3 hours

General Instructions:

1. This question paper contains six sections- A, B, C, D, E and F. Each part is compulsory.
2. Section - A has 16 objective type questions of 1 mark each.
3. Section - B has 8 MCQ type questions of 1 mark each.
4. Section - C has 2 Case based questions.
5. Section - D has 8 short answer type (SA1) questions of 2 marks each.
6. Section - E has 4 short answer type (SA2) questions of 3 marks each.
7. Section - F has 4 long answer type questions (LA) of 5 marks each.
8. There is an internal choice in some of the questions.

SECTION - A

1	If $\mathrm{n}(\mathrm{A})=3$, then how many reflexive relations are possible in set A ?	1
2	A relation R in $S=\{4,2,3\}$ is defined as $R=\{(4,4),(4,2),(2,2),(3,3)\}$. Find the element of the relation R to be removed to make it as an equivalence relation	1
3	Let $\mathrm{A}=\{1,2,3,4\}$. Let R be the equivalence relation on $\mathrm{A} \times \mathrm{A}$ defined by $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d})$ if $\mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c}$. Then find the equivalence class $[(1,3)]$ is OR Find the maximum number of equivalence relations on the set $\mathrm{A}=\{2,3,4\}$	1
4	State the reason why the relation $\mathrm{R}=\left\{(a, b): a \leq b^{2}\right\}$ on the set R of real numbers is not reflexive.	1
5	A relation R in the set of real numbers R defined as $\mathrm{R}=\{(a, b): \sqrt{a}=b\}$ is a function or not. Justify	1
6	Let $\mathrm{f}:[2, \infty) \rightarrow \mathrm{R}$ be the function defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-4 \mathrm{x}+5$, then find the range of f	1
7	$\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]$ is equal to	1
8	Write the principal value of $\tan ^{-1}(\sqrt{3})+\cot ^{-1}(-\sqrt{3})$ OR Find the value of $2 \sec ^{-1} 2+\sin ^{-1}\left(\frac{1}{2}\right)$	1
9	Evaluate $\int \frac{x^{3}}{x+1} d x$	1

10	Find the maximum value of $\left\|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+\sin \theta & 1 \\ 1 & 1 & 1+\cos \theta\end{array}\right\|$	1
11	if $\left\|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right\|=8$, then find the value of x	1
12	If A is a square matrix of order 3 such that $\|\operatorname{adj} A\|=64$, then $\|A\|$ is OR If A is square matrix such that $A^{2}=A$, then $(I+A)^{3}-7 A$ is equal to	1
13	Evaluate $\int \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}} d x$	1
14	Find the value of $\mathrm{k}(\mathrm{k}<0)$ for which the function f defined as $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cl}\frac{1-\cos k x}{x \sin x}, & x \neq 0 \\ \frac{1}{2}, & , x=0\end{array}\right.$ is continuous at $\mathrm{X}=0$	1
15	If $\mathrm{e}^{\mathrm{x}}+e^{y}=e^{x+y}$, then find $\frac{d y}{d x}$ If $\mathrm{x}=\mathrm{a} \sec \theta, \mathrm{y}=\mathrm{b} \tan \theta$, then find $\frac{d^{2} y}{d x^{2}}$ at $\theta=\frac{\pi}{6}$	1
16	Find the intervals in which the function f given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-4 \mathrm{x}+6$ is strictly increasing:	1
	SECTION - B	
17	The set of points where the functions f given by $\mathrm{f}(\mathrm{x})=\|x-3\| \cos x$ differentiable is (a) R (b) $\mathrm{R}-\{3\}$ (c) $(0, \infty)$ (d) none of these	1
18	$\mathrm{A}=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]$, then the value of x satisfying $0<x<\frac{\pi}{2}$ when $\mathrm{A}+\mathrm{A}^{\mathrm{T}}=\sqrt{2} \mathrm{I}_{2}$ is (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{5}$	1
19	If a function $f: A \times B \rightarrow B \times A$ is defined by $f(a, b)=(b, a)$ on two sets A and B, then the function is (a) Many-one (b) One-one but not onto (c) One-one and onto (d) Neither one-one nor onto	1
20	In a linear programming problem, the constraints on the decision variables x and y are $x-3 y \geq 0$, $\mathrm{y} \geq 0$ and $0 \leq \mathrm{x} \leq 3$, then the feasible region (a) is not in the first quadrant (b) is bounded in the first quadrant (c) is unbounded in the first quadrant (d) does not exist	1
21	If $\mathrm{y}=\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\ldots \ldots \ldots \infty}}}$, then $(2 y-1) \frac{d y}{d x}$ is equal to (a) $\sin \mathrm{x}$ (b) $\cos x$ (c) $-\cos x$ (d) $-\sin x$	1

22	If $\mathrm{A}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, then A^{100} is (a) $2^{100} A$ (b) $2^{98} \mathrm{~A}$	(c) $2^{99} A$	(d) $2^{97} \mathrm{~A}$	1
23	The interval on which the function $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}$ (a) $(-1, \infty)$ (b) $(-2,-1)$	$\mathrm{x}^{2}+12 \mathrm{x}-1$ is dec (c) $(-\infty,-2)$	id (d) $(-1,1)$	1
24	If $y=\tan (x+y)$, then $\frac{d y}{d x}$ is equal to (a) $-\operatorname{Cosec}^{2}(x+y)$ (b) $\operatorname{Cosec}^{2}(x+y)$	(c) $-\operatorname{Cosec}(x+y)$	(d) $\operatorname{Cosec}(x+y)$	1

SECTION - C

\left.| 25 | CASE-BASED/DATA-BASED |
| :--- | :--- | :--- | :--- |
| Two schools A and B want to award their selected students on the values of Honesty, Hard work, and | |
| Punctuality. The school A wants to award Rs. x each, Rs. y each and Rs. z each for the three | |
| respective values to its 3,2 and 1 students respectively with a total award money of Rs.2200. School | |
| B wants to spend Rs. 3100 to award its 4, 1 and 3 students on the respective values (by giving the | |
| same award money to the three values as school A). If the total amount of award for one prize on | |
| each value is Rs. 1200. Using the concept of matrix and determinants answer the following questions. | |$\right\}$

33	Show that the relation R on a set of real numbers defined by $x R y$ if $\mathrm{x}-\mathrm{y}+\sqrt{2}$ is irrational is reflexive but neither symmetric nor transitive	2
34	If $\mathrm{y}=\sec ^{-1}\left(\frac{\sqrt{x}+1}{\sqrt{x-1}}\right)+\sin ^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)$, then find $\frac{d y}{d x}$	2

SECTION - E (Each question carries 3 marks)

35	Find X so that $X\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{ccc}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$	3
36	Find the equation of the line joining $\mathrm{A}(1,3)$ and $\mathrm{B}(0,0)$ using determinants and find k if $\mathrm{D}(\mathrm{k}, 0)$ is a point such that area of triangle ABD is 3 sq units.	3
37	If $\mathrm{y}=e^{x \sin ^{2} x}+(\sin x)^{x}$, find $\frac{d y}{d x}$ OR If $x=a \sin 2 t(1+\cos 2 t)$ and $y=b \cos 2 t(1-\cos 2 t)$, find $\frac{d y}{d x}$ at $t=\frac{\pi}{4}$	3
38	Evaluate $\int \frac{1}{1+\cot x} d x$ Evaluate $\int \frac{1}{1+\tan x} d x$	3
SECTION - F (Each question carries 5 marks)		
39	Use product $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$ to solve the system of equation $x+3 z=9$, $-x+2 y-2 z=12$ and $2 x-3 y+4 z=3$ OR	5

	If $\mathrm{A}=\left[\begin{array}{ccc}2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20\end{array}\right]$, then find A^{-1}. Using A^{-1} solve the set of equations $\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=2$, $\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=5$ and $\frac{6}{x}+\frac{9}{y}-\frac{20}{z}=-4$.	
40	If $\mathrm{y}=\frac{x \cos ^{-1} x}{\sqrt{1-x^{2}}}-\log \sqrt{1-x^{2}}$, then prove that $\frac{d y}{d x}=\frac{\cos ^{-1} x}{\left(1-x^{2}\right)^{3 / 2}}$	5
41	Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the volume of the sphere.	5
42	A manufacturing company makes two models A and B of a product. Each piece of Model A requires 9 labour hours for fabricating and 1 labour hour for finishing. Each piece of Model B requires 12 labour hours for fabricating and 3 labour hours for finishing. For fabricating and finishing, the maximum labour hours available are 180 and 30 respectively. The company makes a profit of Rs 8000 on each piece of model A and Rs 12000 on each piece of Model B. How many pieces of Model A and Model B should be manufactured per week to realise a maximum profit? What is the maximum profit per week? OR Reshma wishes to mix two types of food P and Q in such a way that the vitamin contents of the mixture contain at least 8 units of vitamin A and 11 units of vitamin B. Food P costs Rs $60 / \mathrm{kg}$ and Food Q costs Rs 80/kg. Food P contains 3 units $/ \mathrm{kg}$ of Vitamin A and 5 units / kg of Vitamin B while food Q contains 4 units $/ \mathrm{kg}$ of Vitamin A and 2 units $/ \mathrm{kg}$ of vitamin B. Determine the minimum cost of the mixture	5

